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Abstract

A novel model for three-dimensional (3D) global simulation of heat transfer in a Czochralski (CZ) furnace for sil-
icon crystal growth was proposed. Convective, conductive and radiative heat transfers in the furnace are solved together
in a conjugated way by a finite control-volume method. A mixed 2D/3D space discretization technique was developed,
and concepts of 2D domain and 3D domain for a CZ furnace were proposed. This technique enables 3D global sim-
ulations to be conducted with moderate requirements of computer memory and computation time. A 2D global sim-
ulation was carried out to obtain good initial conditions for 3D global modeling to speed up the global iteration. The
model was demonstrated to be valid and reasonable.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Czochralski (CZ) method has for several decades
been the most widely used technique for growing high-
quality bulk crystals of silicon. The thermal field in the
as-grown crystal, the melt–crystal interface shape and
the melt flow motion in the crucible have significant ef-
fects on the formation of micro-defects and crystal qual-
ity in a CZ growth process. It is therefore important to
elucidate the heat and mass transfer mechanisms and to
establish methods for controlling the melt–crystal inter-
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face shape and the thermal field in a CZ furnace. With
the increasing capacity of modern computer and compu-
tation technology, application of numerical simulation
has become an effective and essential tool for field pre-
diction, parameter control and design optimization of
a CZ growth system in order to improve silicon crystal
quality.

Over the past two decades, there have been many
works on numerical analyses of CZ crystal growth pro-
cesses using various models that can be generally divided
into three types: local models [1–4], 2D global models
[5–8] and 2D global/3D local combined models [9,10].
In fact, since all constituents of a CZ furnace are closely
related to each other through different forms of heat
transfer by melt convection, solid conduction and
thermal radiation, the CZ growth furnace is a highly
nonlinear and strongly conjugated thermal system.
ed.
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Nomenclature

c heat capacity (J/kg K)
~F body force exerted on melt by external field

imposed (N/m3)
~g gravitational acceleration (m/s2)
DH release of the latent heat of solidification (J/

kg)
k thermal conductivity (W/m K)
K surface view factor between two infinitesi-

mal radiative elements
KC axisymmetric view factor
Ke surface view factor between two finite radia-

tive elements
~n unit normal vector
p pressure (Pa)
pr circumferential projection
q heat flux (W/m2)
~r space vector (m)
s longitudinal coordinate (m)
S area (m2)
T temperature (K)
Tm melting temperature of silicon (K)
~V velocity (m/s)
Vg crystal growth rate (m/s)
oV radiative enclosure

oV2 the part of radiative enclosure in the 2D
domain

oV3 the part of radiative enclosure in the 3D
domain

~x;~x� infinitesimal radiative surface elements
~x 0 infinitesimal radiative elements in the pro-

jection plane
X, Xi, Xji finite radiative surface elements

Greek symbols

bT thermal expansion coefficient (1/K)
e radiative emissivity
l melt viscosity (kg/m s)
h, h* azimuthal angles
q density (kg/m3)
r Stefan–Boltzmann constant (W/m2 K4)

Subscripts

c geometrical center
h heater
m melt
rad radiation
s solid
S skeleton of the global domain

4482 L. Liu, K. Kakimoto / International Journal of Heat and Mass Transfer 48 (2005) 4481–4491
Knowledge of heat transport throughout the entire fur-
nace is thus required. On the other hand, the melt flow in
a crucible and, hence, the thermal field within the
growth furnace are principally three-dimensional, espe-
cially in cases with melt flow of a high Reynolds number
or under the influence of external fields. Therefore, 3D
global analysis of a CZ growth system is necessary for
a better understanding of realistic phenomena and in-
sight physics of the growth process and, hence, for pro-
cess improvement. Unfortunately, however, although
there have been many studies on local simulations and
2D global simulations, as mentioned above, there has
been no report on real 3D global simulations.

As far as a 3D global simulation is concerned, the
most challenging difficulties lie in the requirements of
very large computer memory and very long time for
computation. In particular, in the calculation of radia-
tive heat transfer, both the computer memory and the
computation time are proportional to the square of the
total number of radiation elements in the growth system.
In this paper, some numerical techniques have been
developed for computation and some novel measures
have been taken in establishing a 3D global model in
order to overcome these difficulties. First, a multi-block
structured grid system has been used for space discreti-
zation, and a finite control-volume method has been em-
ployed for equation discretization. Some efficient
algorithms based on a structured mesh can thus be used
to speed up the computation. Second, 2D global simula-
tion has been performed at the outset of computation in
order to obtain better initial fields and values of un-
known parameters a priori, such as heater power and
melt–crystal interface shape. The third but the most
important technique developed is a 2D/3D mixed dis-
cretization technique in which the domains at the core
region of a furnace are discretized in a three-dimensional
way and the other domains are discretized in a
two-dimensional way. By applying these numerical tech-
niques and simplification measures, 3D global simula-
tions are feasible with moderate requirements of
computation resources.
2. Model description and discrete system

2.1. Major assumptions and definitions

A typical configuration of a Czochralski growth fur-
nace, which will serve as a basis for illustrating our mod-
el and method in later sections, is shown in Fig. 1(a).

The following major assumptions are used in our
model: (1) The geometry of the furnace configuration



Fig. 1. Discrete system of computation: (a) Configuration and
domain partition of a typical Czochralski furnace: 3D domain
(shadowed) and 2D domain (non-shadowed), (b) a local view of
the computation grid.
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is axisymmetric with the exception of the melt–crystal
interface, whose shape might be three-dimensional. (2)
The growth system is quasi-steady. (3) Radiative trans-
fer is modeled as diffuse-gray surface radiation. (4) The
melt flow in the crucible is laminar and incompressible.
(5) The effect of gas flow in the furnace is neglected. Fur-
thermore, since our purpose is to develop a 3D global
model, the capillary effect of the melt free surface is ne-
glected for the sake of simplicity.

According to heat transport mechanisms in different
media and their implementations in the algorithm, we
subdivide all of the constituents of a growth furnace
into three types of media: radiative enclosure macro-
elements, the melt–crystal macro-element and solid
conductive macro-elements. The radiative enclosures
connect the various liquid and solid constituents in the
furnace. Heat is exchanged by radiation between sur-
faces of a radiative enclosure. The melt–crystal macro-
element consists of the melt and the crystal together with
their interface, whose shape is unknown a priori. The
thermal field in the melt–crystal macro-element is gov-
erned by the convective heat transfer in the melt and
the conductive heat transfer in the crystal. The solid con-
ductive macro-elements cover all the other solid compo-
nents in a furnace in which the heat transfer is in the form
of conduction (and advection if it is rotating). Among
them, the chamber walls are a special solid conductive
macro-element that can be treated in one dimension.
The set of interfaces connecting different macro-elements
constitutes the skeleton of the global domain. Obviously,
it consists of two types of interfaces: the radiative sur-
faces of the radiative enclosures and the conductive inter-
faces between adjacent solid conductive macro-elements
or the melt–crystal macro-element. The global model
consists of a set of local iterations for each of these
macro-elements and a global conjugated iteration among
them through iteratively updating the thermal field on
the skeleton of the global domain.

2.2. Construction of a discrete system

In order to establish a discrete system for numerical
simulation, the domains of all constituents of a furnace
are subdivided into a number of block regions, for
example, as shown in Fig. 1(a), in which subdivision re-
sulted in a total of 13 block regions. Each of these block
regions represents a conductive macro-element except
for block number 2 and block number 3, which consti-
tute the melt–crystal macro-element. All of the radiative
surfaces of these block regions constitute the radiative
enclosure macro-elements in the furnace. There are three
radiative enclosures in the example shown in Fig. 1(a). A
structured mesh is generated for each of these block re-
gions, while the chamber walls are discretized in one
dimension.

Since the most challenging difficulty in 3D global
modeling is the requirements of very large computer
memory and very long calculation time, measures to
simplify the model must be taken. We therefore devel-
oped a mixed 2D/3D discretization technique. In this
technique, the domains of components in the core region
of a furnace, for example, the melt, crystal, crucible
and heater, as marked by a shadow in Fig. 1(a), are
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discretized in a three-dimensional way. The remaining
domains that are away from the core region are discret-
ized in a two-dimensional way. This technique is based
on (1) the fact that the three-dimensionality of the sys-
tem is induced originally in the melt flow and (2) the
observation that it rapidly becomes weaker with increase
in distance from the melt region and finally nearly disap-
pears at the chamber walls that are cooled by external
coolant convection. We can thus assume that the core
region of a CZ growth furnace, namely, the 3D domain,
is characterized by three-dimensionality and that the re-
gions away from the core region, namely, the 2D do-
main, are predominantly two-dimensionally. The
thermal field is uniform in the azimuthal direction in
the 2D domain, and we can therefore treat them in
two dimensions in local iterations.

Whether a component or a macro-element is included
in the 2D domain or in the 3D domain depends on the
available computer memory and permissible computa-
tion time as well as the expected extent of uniformity
of the thermal field in the azimuthal direction. The num-
ber of macro-elements or components included in the
3D domain is selectable and the external boundaries of
the 3D domain are adjustable in the model. Therefore,
the proposed 3D global model turns out to be a 2D axi-
symmetric global model when the growth system is two-
dimensionally governed or a fully 3D global model when
it is entirely three-dimensionally featured.

As a result, for example, a local view of the compu-
tation grid system is as shown in Fig. 1(b) where the
3D domain includes the crystal, melt, crucible and hea-
ter. For the sake of flexibility, we programmed our code
in a 3D frame for local iterations in all macro-elements.
An optimum sector domain of five degrees is selected for
space discretization for any macro-element in the 2D
domain. Three columns of control volume are distrib-
uted in the circumferential direction to represent the local
geometry of the configuration for geometrical coefficient
calculation. However, the governing equations are dis-
cretized and solved for the center column only.

The multi-block 3D-structured grid system is estab-
lished in such a way that the circumferential projection
of the 3D mesh in a meridional plane is a multi-block
2D-structured grid system, which is to be used in 2D glo-
bal simulation for obtaining better initial fields and
parameter values. The grids of adjacent 2D or 3D blocks
are consistent with each other along their interfaces. For
radiation calculations, the chamber walls are discretized
in one dimension, while on other radiative surfaces, the
finite radiative surface elements are also consistent with
the surface grids of solid or liquid regions to which the
radiative surface belongs. By doing so, the manipula-
tions become simple and efficient when information is
transferred from the 2D global solution to 3D global
simulation or when information is exchanged between
two adjacent macro-elements.
By applying these measures, the total numbers of dis-
crete control volumes and the radiative surface elements
decrease dramatically, enabling 3D global modeling
with moderate requirement of computer resources and
permissible computation time. Furthermore, in order
to improve the preciseness of computation, the grids
are refined with special attention to places close to inter-
faces or boundaries, to places with abrupt changes in
physical properties or large gradient of variable field,
and to sharp edges or corners. This is particularly
important for the radiation calculation in which the cal-
culation of view factors at edges or corners is very sen-
sitive to the grid quality close to them.
3. Radiative heat transfer in radiative enclosures

Modeling of radiative heat transfer in radiative
enclosures is an important part of global simulation.
In our model, the radiative heat exchange is modeled
on the basis of an assumption of diffuse-gray surface
radiation. A net-radiation approach [6] is employed for
the radiation calculation. Each radiative surface element
distributed on the enclosure is taken as an isothermal
patch. The view factor associated with every pair of radi-
ative surface elements is first calculated, taking into
account the viewed and hidden parts of the enclosure.
A matrix relationship is then established and solved by
iteration between the net heat fluxes and the radiative
emitted heat fluxes, i.e., the fourth powers of tempera-
tures, on the enclosure surfaces.

Let oV stand for a radiative enclosure. The surface
temperature T ð~xÞ and the net heat flux qð~xÞ on oV are re-
lated by the following integral relationship:

qð~xÞ
eð~xÞ �

Z
~x�2oV

Kð~x;~x�Þ 1� eð~x�Þ
eð~x�Þ qð~x�ÞdS�

¼ rT 4ð~xÞ �
Z
~x�2oV

Kð~x;~x�ÞrT 4ð~x�ÞdS�; ð1Þ

where ~x and ~x� are infinitesimal radiative surface ele-
ments on oV. dS* is the area of the infinitesimal surface
element~x�. Kð~x;~x�Þ is the surface view factor between~x
and~x�. Whenever~x and~x� face each other, it is given by
the following formula:

Kð~x;~x�Þ ¼ � ~x�~x�ð Þ �~n½ � ð~x�~x�Þ �~n�½ �
p ð~x�~x�Þ � ð~x�~x�Þ½ �2

. ð2Þ

Otherwise, when ~x and ~x� do not face each other, it
equals zero.

In 2D global modeling, the system is governed by
two-dimensional physics. Let pr(oV) stand for the inter-
section of oV and a meridional plane h = 0, as illustrated
in Fig. 1(a), and s be the curvilinear abscissa along it.
The radiation calculation is performed on pr(oV) that
is discretized by a set of one-dimensional finite elements.



Fig. 2. Space relationship of radiative surface elements: (a)
X 2 oV2, (b) X 2 oV3.
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Let X and Xi represent the finite elements on pr(oV), and
let ~xc and ~xic denote their geometrical centers respec-
tively. The discretized form of relationship (1) is ob-
tained as follows after some manipulations by taking
into account the axisymmetry of the furnace:

qðX Þ
eðX Þ �

XNT
i¼1

ricKCð~xc;~xicÞ
1� eðX iÞ
eðX iÞ

qðX iÞDsi

¼ rT 4ðX Þ �
XNT
i¼1

ricKCð~xc;~xicÞrT 4ðX iÞDsi. ð3Þ

Matrix Eq. (3) is solved in the 2D global modeling for a
radiative enclosure, in which NT is the total number of
finite radiative elements distributed on it.

The axisymmetric view factor KCð~xc;~xicÞ is defined by
the integral

KCð~xc;~xicÞ ¼
Z 2p

0

Kð~xc;~x�icÞdh
�; ð4Þ

where~x�ic ¼ ðric cos h�; ric sin h�; zicÞ.
In 3D global modeling, let oV2 and oV3 denote the

radiative surfaces of a radiative enclosure that fall in
the 2D domain and 3D domain, respectively, as illus-
trated in Fig. 2. Taking into account the structure of
the discrete system, the two-dimensional physics in the
2D domain and the axisymmetry of the furnace, the dis-
cretized form of relationship (1) is obtained as follows
for any finite radiative element ~X 2 oV , after many triv-
ial manipulations:

qðX Þ
eðX Þ � rT 4ðX Þ

¼
XMV 2

j¼1

1� eðX jÞ
eðX jÞ

qðX jÞ � rT 4ðX jÞ
� �

KCð~xc;~xjcÞrjcDsj

þ
XMV 3

j¼1

XNj

i¼1

1� eðX jiÞ
eðX jiÞ

qðX jiÞ � rT 4ðX jiÞ
� �

� KeðX ;X jiÞrjicDsji. ð5Þ

MV2 and MV3 are the total numbers of radiative ele-
ments along pr(oV2) and pr(oV3), while Nj is the total
element number in the azimuthal direction at ~x0jic 2
prðoV 3Þ. The space relationship of the related surface
elements is illustrated in Fig. 2(a) when X 2 oV2 and in
Fig. 2(b) when X 2 oV3.

The view factor Ke(X,Xji) is calculated as follows:

when ~X 2 oV 2; KeðX ;X jiÞ ¼
ðhji2�hji1Þ

2p
KCð~xc;~xjicÞ; ð6Þ

when ~X 2 oV 3; KeðX ;X jiÞ ¼
Z hji2

hji1

Kð~xc;~x�jicÞdh
�; ð7Þ

where (hji1,hji2) is the azimuth range covered by
Xji 2 oV3 and~x�jic ¼ ðrjic cos h�; rjic sin h�; zjicÞ.

Eq. (5) is applied to every radiative surface element of
a radiative enclosure. The resulting matrix equation is
solved by a local iterative procedure. Since there are
two unknowns but only one equation for a radiative ele-
ment, either the net heat flux or the temperature of a
radiative element is kept unchanged, while another un-
known is iteratively solved. The unchanged unknown
will be renewed and solved in the global iteration. For
example, in our calculation, the following conditions
are applied in the local iterations of radiation calcula-
tions for each radiative enclosure of a growth furnace.
On the inside wall of heater,

qðX Þ ¼ qSðX Þ ð8Þ

and on the other radiative surfaces of a radiative
enclosure,

T ðX Þ ¼ T SðX Þ. ð9Þ
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Here, qS(X) and TS(X) are the outgoing heat flux and the
temperature on the skeleton of the global domain of a
furnace, respectively. They are renewed and solved in
the global iteration but kept fixed in local iterations of
any macro-elements.

The accuracy of the radiation calculation is checked
with the help of the energy conservation in a radiative
enclosure, i.e.,

toV qð~xÞdS ¼ 0. ð10Þ

In our calculations, the magnitude of the left side of for-
mulation (10) is less than 0.02% of the heater power.

Another important task in modeling radiative heat
transport in a radiative enclosure is the calculation of
view factors. Atherton et al. [5] found that the error of
view factor calculation was more sensitive to the azi-
muthal than to the axial or radial discretization by a
numerical integration approach. In our calculations,
the preciseness of the view factor calculation is ensured
by two measures. First, fine resolution of radiative ele-
ment distribution is ensured at locations where shape
changes of configuration geometry or discontinuities of
view factors exist. Second, the integrations in the azi-
muthal direction in formulations (4) and (7) are solved
analytically as follows.

By noting the similar forms of expression in formula-
tions (4) and (7), we first consider a general integralR h
0
Kð~xc;~x�Þdh�, in which ~xc ¼ ðrc cos hc; rc sin hc; zcÞ and

~x� ¼ ðr0 cos h�; r0 sin h�; z0Þ. The circumferential projec-
tion of ~x� in plane h* = 0 (or named the projection
plane) is~x0 ¼ ðr0; 0; z0Þ.

Substituting the expressions of ~xc, ~x
�, ~nc and ~n� into

the formulation of Kð~xc;~x�Þ, like expression (2), and then
integrating it with respect to h� over (0,h), we can finally
obtain the following analytical expression after many
trivial manipulations:Z h

0

Kð~xc;~x�Þdh� ¼ IðhÞ; ð11Þ

where I(h) is a function with respect to h only. It was not
developed here in detail for brevity.

Now let us consider the calculation of the axisymmet-
ric view factor KCð~xc;~x0Þ. Let H be the range of h* for
which~xc and~x

� face each other and, without loss of gen-
erality, characterize it as a set of mC intervals ]hkm,hkM[,
i.e.,

H ¼
[mC

k¼1

�hkm; hkM ½; 0 6 hkm < hkM 6 2p. ð12Þ

Applying formulations (11) and (12), the axisymmet-
ric view factor gives

KCð~xc;~x0Þ ¼
XmC

k¼1

½IðhkM Þ � IðhkmÞ�. ð13Þ

His calculated by a view and hidden algorithm [6].
Regarding the calculation of the view factor between
two finite surface elements as expressed in formulation
(7), the range of h� 2 ]hji1,hji2[ for which~xc and~x�jic face
each other is calculated as

K ¼ H
\

chji1; hji2b; ð14Þ

Kcan also be characterized by a set of me intervals
]hke,hkE[, i.e.,

K ¼
[me

k¼1

�hke; hkE½; hji1 6 hke < hkE 6 hji2. ð15Þ

Applying formulations (11) and (15), the view factor
in formulation (7) gives

KeðX ;X jiÞ ¼
Xme

k¼1

½IðhkEÞ � IðhkeÞ�. ð16Þ

By this procedure, all view factors in Eq. (5) are calcu-
lated analytically and precisely.
4. Convective heat transfer in the melt and conductive

heat transfer in solid constituents

The melt–crystal macro-element is a union of the
melt and the crystal. A local iteration is performed in
this combined domain in order to ensure the thermal
conditions on the melt–crystal interface are satisfactorily
met throughout the global iteration, in which the tem-
perature along the melt–crystal interface will be used
in tracking the interface location. In the local iteration,
however, the interface is kept fixed.

With the assumptions of a quasi-steady system and
incompressible laminar flow of the melt, the mass con-
servation, momentum and energy equations for the melt
flow in a crucible can be written as follows:

r � ~V ¼ 0; ð17Þ

q~V � r~V ¼ �rp þr � lðr~V þr~V
TÞ

h i

� q~gbTðT � TmÞ þ~F ; ð18Þ
qc~V � rT ¼ r � ðkrT Þ. ð19Þ

The last two terms in Eq. (18) are the thermal buoyancy
force and the body force exerted on the melt by external
fields that might be imposed.

The governing equation for heat transfer in the crys-
tal is:

qscsV p~ez � rT ¼ r � ðksrT Þ. ð20Þ

For the calculation of melt flow, a non-slip condition
is applied on all crucible walls and the crystal solidifica-
tion front. A free surface condition is enforced on the
melt top surface. For the calculation of thermal field,
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the boundary conditions are given as follows. On the
melt–crucible interfaces and the crystal–seed interface,
where heat is transferred by conduction,

T ð~rÞ ¼ T Sð~rÞ. ð21Þ

On the free surface of the melt and the external sur-
faces of the crystal, where heat is transferred by
radiation,

km
oT
on

¼ qSð~rÞ on the melt surface; ð22Þ

ks
oT
on

¼ qSð~rÞ on the crystal surfaces. ð23Þ

Here, T Sð~rÞ and qSð~rÞ are the temperature and the out-
going heat flux on the skeleton of the global domain,
respectively. On the melt–crystal interface, the following
relationship should be satisfied:

kmðrT Þm �~n ¼ ksðrT Þs �~nþ qsV gDH~ez �~n. ð24Þ

Heat is transferred in all solid macro-elements by
conduction. The heat transfer in the heater is governed
by

r � ðkhrT Þ þ SQ ¼ 0; ð25Þ

where SQ is the heat source per unit volume in the hea-
ter. It is uniformly distributed in the heater and deter-
mined by the input heater power.

The governing equations for the thermal fields in
other solid conductive macro-elements are in the form

qici~V i � rT ¼ r � ðkirT Þ; ð26Þ

where ~V i is the advection velocity. These solid macro-
elements include the crucible, puller/seed, pedestal and
heat insulators. The steel walls of the chamber are taken
as a special solid conductive macro-element, in which
the temperature is uniformly imposed with the tempera-
ture of the coolant flowing outside the thin walls.

On the inside wall of the heater and all conductive
interfaces, condition (21) is applied. On the other radia-
tive surfaces, the following condition is enforced:

ki
oT
on

¼ qSð~rÞ. ð27Þ

Finite volume calculations were carried out for the
thermal fields in these macro-elements with a discretiza-
tion on non-orthogonal grids.
5. Global solution

The global solution is obtained by solving the respec-
tive macro-elements separately and coupling them
together. In other words, local iterations in each
macro-element in the growth furnace and a conjugated
global iteration among them constitute global modeling.
In this section, we introduce conjugated global iteration
in which all macro-elements are coupled with each other
through appropriate treatment of the thermal conditions
on the skeleton of the global domain and updates of un-
known parameters of the system, i.e., the heater input
power and melt–crystal interface.

5.1. Treatment of the thermal conditions on the

skeleton of the global domain

Different macro-elements in a growth furnace are
associated with each other through their interfaces that
form the skeleton of the global domain. Effective and
efficient treatment of the interfacial conditions on the
skeleton is therefore important for global modeling. In
our model, the thermal field on the skeleton of the global
domain is kept fixed during the procedure for obtaining
local solutions of respective macro-elements. It is re-
newed only in the global iteration according to the con-
ditions: (1) the temperature is continuous across the
interfaces and (2) energy balance is ensured at the inter-
faces. For the sake of clarity, we divide the skeleton into
two types of interfaces: radiative interfaces that link a
radiative enclosure and a solid conductive macro-
element or the melt–crystal macro-element, and the
conductive interfaces that link a solid conductive macro-
element and another solid conductive macro-element or
the melt–crystal macro-element.

The inside walls of the chamber are a special kind of
radiative interface, on which the temperature is imposed
with the coolant temperature. The heat flux is calculated
in the local solution of the adjacent radiative enclosure
by Eq. (5), i.e.,

qSð~rÞ ¼ qradð~rÞ. ð28Þ

On the heater inside wall, we handle the thermal condi-
tions with

T Sð~rÞ ¼ T radð~rÞ; ð29Þ

qSð~rÞ ¼ kh
oT
on

. ð30Þ

On the other radiative interfaces, the temperature is re-
newed as

T Sð~rÞ ¼ T cndð~rÞ. ð31Þ

The heat flux is renewed by expression (28). The sub-
script cnd represents the solution of a conductive
macro-element or the melt–crystal macro-element, while
rad represents the solution of a radiative enclosure. Be-
cause the mechanism of heat transfer in a CZ furnace
and the system of governing equations are highly nonlin-
ear, a relaxation technique is applied in renewing the
thermal field on these interfaces. Relaxation parameter
values between 0.05 and 0.3 are used in our calculations.

On a conductive interface between two 2D-featured
macro-elements or between two 3D-featured macro-ele-
ments, the following relationships hold:
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stream function is 2 · 10�4 m3/s.
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T i1ð~rÞ ¼ T i2ð~rÞ ¼ T Sð~rÞ; ð32Þ

k
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� �
i2

; ð33Þ

where the subscript i is the interface index, 1 and 2 de-
note the macro-elements on both sides of the interface.
On a conductive interface between a 2D-featured
macro-element and a 3D-featured macro-element, the
following two relationships hold:

T i12oV 2ðs0Þ ¼ T i22oV 3ðs0; hÞ ¼ T Sðs0Þ; ð34Þ

k
oT
on

� �
i12oV 2

¼ 1

2p

Z 2p

0

k
oT
on

� �
i22oV 3

dh�; ð35Þ

where s 0 is the longitudinal coordinate of the circumfer-
ential projection of the interface.

With this treatment of the thermal conditions on the
skeleton of the global domain, local solutions of all
macro-elements are conjugated with each other and
the equation system of the problem is well closed. The
principles of temperature continuity and energy balance
across all of the interfaces are well satisfied when the glo-
bal iteration is converged.

5.2. Determination of heater input power and

melt–crystal interface location

The code requires only a set of input parameters to
perform a global simulation by this model. These input
parameters are the furnace geometry, material proper-
ties of each component, coolant temperature, melt vol-
ume, crystal radius and crystal growth rate. The heater
input power and the melt–crystal interface shape are
unknowns. They are solved iteratively in the global
solution.

The intersection edge of the melt, crystal and gas, i.e.,
the tri-junction edge, is fixed in space. The temperature
along the tri-junction edge, which is part of the skeleton
of the global domain, is calculated from the equation
system. In 3D global modeling with the assumption of
axisymmetric geometry, the temperature along the tri-
junction edge is not perfectly uniform. For the sake of
clarity, let T tri denote the current mean temperature over
it. The heater input power is thus determined in such a
way that it is modified iteratively in the global iteration
according to ðTm � T triÞ until T tri approaches Tm. The
mean temperature over the tri-junction edge is equal to
the melting point of silicon when the global solution is
converged.

The melt–crystal interface shape is three-dimen-
sional. Its location is determined in such a way that it
is updated iteratively in the global iteration according
to ðT � T triÞ, where T is the current local temperature
on the interface, until ðT � T triÞ approaches zero. That
is, we track the melt–crystal interface with identification
to an isothermal face of the mean temperature over the
tri-junction edge. Since the temperature cannot be per-
fectly uniform in the region of the interface near the
tri-junction edge in this model, it is presumed to be
smoothly distributed in this region. Thus, when the glo-
bal solution is converged, the melt–crystal interface con-
verges to an isothermal face of the melting temperature
of silicon except a narrow region near the tri-junction
edge where the temperature is smoothly distributed.

5.3. Global iteration strategy

In view of the extreme complexity and the high non-
linear property of the system, very small relaxation fac-
tors have to be adopted in the global solution, for
example, in the skeleton treatment and in the heater
power renewal process, if the 3D global iteration starts
on the basis of a poor initial condition. The computation
will thus be very time-consuming. In order to solve this
problem, a 2D global simulation, which can be com-
pleted in a short computation time, is carried out at
the outset for obtaining the initial fields in the furnace
and the initial value of heater input power. Based on
the 2D global solution, much larger relaxation factors
can then be used in the 3D global iteration, resulting
in a dramatic decrease in computation time.
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The iteration procedure of the global solution is out-
lined as follows. (1) Carry out a 2D global simulation.
The solution is taken as the initial field, the initial
melt–crystal interface position and the initial value of
the heater power for the following 3D global iteration.
(2) Solve the melt flow, thermal field and external field,
if it is imposed, in the melt–crystal macro-element with
Fig. 4. Temperature distribution in a furnace in a transverse magnetic
under consideration. Isotherms are plotted every 30 K in solids and eve
surface. Isotherms are plotted every 3.5 K. (c) Temperature difference
a fixed interface shape. (3) Solve the thermal fields in
all of the other solid conductive macro-elements. (4) Re-
new the thermal field on the skeleton of the global
domain according to Eqs. (30)–(33). (5) Calculate the
radiative heat transfer in all radiative enclosures. (6) Re-
new the thermal field on all radiative surfaces according
to Eqs. (28) and (29). (7) Check the convergence of the
field. (a) Temperature distribution in the furnace and locations
ry 10 K in the melt. (b) Temperature distribution at the melt top
s over circumference at different locations.
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global iteration. If it has not converged, return to step
(2). If it has converged, proceed to step (8). (8) Check
the convergence of the heater input power. If it has
not converged, renew it according to ðTm � T triÞ and
then return to step (2). If it has converged, proceed to
step (9). (9) Check the convergence of the melt–crystal
interface location. If it has not converged, modify it
according to ðT � T triÞ. Adjust the computation grids
in the melt–crystal domain to fit the new interface shape.
Then return to step (2). If it has converged, terminate the
computation and output the converged solution.
Fig. 5. Top view of the melt–crystal interface.
6. Computation results for model validation

Two test growth processes were numerically simu-
lated to demonstrate the validity of the proposed model.
The configuration of the growth furnace is as shown in
Fig. 1(a). The diameters of the crystal and crucible are
respectively 64 mm and 32 mm. All the components of
the furnace were included in the 2D domain for a test
growth process with a crystal rotating at 10 rpm and a
crucible rotating at �3 rpm. The computation took
about 34 h on a Pentium-4 PC machine. Fig. 3 shows
the calculated results of temperature distribution in the
crystal, melt and crucible. The stream function distribu-
tion of the melt flow is shown in the right half-plane of
the melt region. The melt–crystal interface profile corre-
sponds to the isotherm of 1685 K, the melting tempera-
ture of silicon. These results are in agreement with our
previous analysis of the same growth furnace by a
FEMAG analysis tool [11].

Another test growth process is in a transverse mag-
netic field with non-rotating crystal and crucible. The
magnetic field is applied in the x-direction with an inten-
sity of 0.3 T. The crystal, melt, crucible, heater and heat
insulators were included in the 3D domain. The compu-
tation took about 42 days on a HP ITANIUM-2 work-
station. Fig. 4(a) shows the temperature distributions in
the melt as well as in solid components in the furnace.
Three-dimensional features can be obviously seen in
the core region of the furnace, especially in the melt.
The temperature distribution at the melt top surface is
presented in Fig. 4(b). It can be noticed that it is prom-
inently non-uniform in the azimuthal direction. In order
to check the temperature non-uniformity over circum-
ference in the furnace, some representative locations
(point A through point J) were selected for consider-
ation, as shown in Fig. 4(a). The temperature differences
over circumference at these locations were compared in
Fig. 4(c). It is found that the temperature difference de-
creases rapidly with distance away from the melt region.
It remains prominent even at the outside wall of cruci-
ble. However, in the heat insulators that are away from
the melt region, the temperature distribution is rather
uniform in the azimuthal direction. This means that
the core region of the furnace must be treated in 3D
but the heat insulators away from the core region can
be treated in 2D in order to save computation resources,
demonstrating that the proposal of 2D domain and 3D
domain in establishing our 3D global model is
reasonable.

The melt–crystal interface shape was found to be 3D
in this growth process, which can be observed in
Fig. 4(a). In Fig. 5, a top view of the interface with iden-
tification to the isothermal surface of the melting tem-
perature of silicon is shown. These results are in good
agreement with the experimental research of Kajigaya
et al. [12]. In their experiment, ellipsoid crystals with
3D interface shapes were grown in a transverse magnetic
field with the same intensity under a condition without
seed rotation.

To determine which components should be included
in the 3D domain is important for computation accu-
racy in this model. In order to investigate the depen-
dence of the choice of components included in the 3D
domain on the temperature field in the melt, other three
choices of components in the 3D domain were investi-
gated for comparison: the first choice with the crystal,
melt, crucible and heater in the 3D domain, the second
choice with the crystal, melt and crucible in the 3D do-
main and the third choice with the crystal and melt only
in the 3D domain. The comparison investigation re-
vealed that, the difference between the results of the first
choice and the results shown in Fig. 4 is negligible. The
difference between the results of the second choice and
the results shown in Fig. 4 is also small. However, the
results of the third choice are obviously different from
that shown in Fig. 4. For comparison, Fig. 6 shows
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the temperature distribution at the melt top surface that
was obtained from the modeling in which only the melt
and crystal were included in the 3D domain. The com-
parison shows that the crucible should be included in
the 3D domain in the modeling. The comparison inves-
tigation further demonstrates the validity of the pro-
posed model.
7. Conclusions

A three-dimensional global model for silicon CZ fur-
naces was proposed. The modeling involves accurately
solving the thermal fields in all constituents and the
3D radiative heat transfer in the furnace with a set of
control parameters. A mixed 2D/3D discretization
scheme was developed, and the concepts of 2D domain
and 3D domain were introduced. 3D global modeling
is feasible with moderate requirements of computer
memory and computation time using this model. The
code of this model has good adaptability for any 3D-
featured CZ growth process with easy adjustment of
the interface location of the 2D domain and the 3D
domain in accordance with available computer resources
and permissible computation time. The model can also
be extended to fully 3D global modeling or 2D global
modeling. The global iteration algorithm is stable,
though the system is extremely nonlinear. The validity
of the model was demonstrated.
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